Product Description
Our Advantages
High precision low backlash servo motor stepper motor planetary reducer gearbox
PLANETX planetary reduce
Planetary reducer square flange:
Planetary reducer is widely used in industrial products due to its small size, light weight, large torque, wide speed ratio range, high rigidity, high precision, high transmission efficiency, maintenance free and other characteristics.
The planetary reducer structure is composed of a sun gear and a planet gear to form an external mesh, and a planet gear and an internal gear ring to form an internal mesh, so that the planet gear can realize revolution while realizing self rotation and maximum transmission of guarantee force; The minimum speed ratio of single-stage reduction is 3, and the maximum speed ratio is generally not more than 10. Common reduction ratios are 3, 4, 5, 6, 7, 8, and 10. The number of reducer stages is generally not more than 3, and the speed ratio is not more than 1.
Most planetary reducers are used with servo motors to reduce speed, increase torque, increase inertia, and ensure return accuracy (the higher the return accuracy, the higher the price). The maximum rated input speed of planetary reducers can reach 12000 rpm (depending on the size of the reducer itself, the larger the reducer, the smaller the rated input speed), and the operating temperature is generally between – 40 ºC and 120 ºC.
Every process requires excellence
Every product is made by heart
Solutions/
Every process requires excellence
Every product is made by heart
High Performance Planetary Gear Motor Precision Speed Reducer WAB060 Design Planetary Gearbox
1.Planetary carrier and output shaft are intergrated structure to ensure maximum torsional rigidity. 2.Planetary wheel with full needle design, increase the contact area to improve the rigidity and output torque. 3.The Gear adopts low carbon alloy steel, through carburizing and quenching, surface hardness is HRC62, anti-impact and strong abrasion resistance. 4.Gears refer to foreign imported software-assisted design to obtain the best tooth shape to reduce noise. 5.The input terminal is connected to the motor shaft in a double-tight manner to obtain the maximum clamping force and zero backlash power transmission. 6.Adopt spiral bevel gear design, allow high output torque, more than 30% higher than straight bevel gear. 7.High tolerance input speed, more than 8 times higher than straight bevel gear input. 8.The meshing tooth imprint of spiral bevel gear has been optimized by optimum design, and the contact tooth surface load is uniform, and long running life. 9.Bevel gears are meshed by optimum motion error analysis and strict process control to ensure high precision running backlash. 10.IP65, anti-dust, anti-water; low backlash, <3arcmin; low noise, <58dB 11.high efficiency(96%);Gear grinding process;easy motor mounting;life-time lubrication;various figure diameters.
Q: How to get a quick quote
A: Please provide the following information when contacting us
- Motor brand
- Motor model
- Motor dimension drawing
- What is the gear ratio
Q: How long is your delivery date
A: We all install it now, but it takes 3-5 days if it is not non-standard. Non standard 10-15 days, depending on the specific situation
Q:Do you provide samples, free or extra
A: A: You can reserve 1 first, and purchase it on demand
Application: | Machinery |
---|---|
Hardness: | Hardened Tooth Surface |
Installation: | Any |
Layout: | Coaxial |
Gear Shape: | Cylindrical Gear |
Step: | 1-3 |
Customization: |
Available
| Customized Request |
---|
What is a Gearbox and How Does It Work?
A gearbox is a mechanical device that transmits power and changes the speed or torque of a rotating input shaft to a different output shaft. It is commonly used in various machines and equipment to control the speed and direction of motion.
Here’s how a gearbox works:
- Input Shaft: The gearbox receives rotational energy from an input shaft connected to a power source, such as an electric motor or an engine.
- Gears: Inside the gearbox are a set of gears with different sizes. These gears mesh with each other, and their arrangement determines the gear ratio, which defines how many revolutions the output shaft will make for a given rotation of the input shaft.
- Output Shaft: The output shaft is connected to the machinery or equipment that needs to be powered. As the gears rotate, the motion and power are transmitted from the input shaft to the output shaft.
- Gear Ratio: By selecting different gear combinations, the gearbox can change the speed and torque of the output shaft. A higher gear ratio results in higher torque and lower speed, while a lower gear ratio provides higher speed and lower torque.
Gearboxes play a crucial role in various applications, including automobiles, industrial machinery, robotics, and more, enabling efficient power transmission and speed control.
editor by CX 2023-08-29